A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9

نویسندگان

  • Yavuz S Dagdas
  • Janice S Chen
  • Samuel H Sternberg
  • Jennifer A Doudna
  • Ahmet Yildiz
چکیده

The Cas9 endonuclease is widely used for genome engineering applications by programming its single-guide RNA, and ongoing work is aimed at improving the accuracy and efficiency of DNA targeting. DNA cleavage of Cas9 is controlled by the conformational state of the HNH nuclease domain, but the mechanism that governs HNH activation at on-target DNA while reducing cleavage activity at off-target sites remains poorly understood. Using single-molecule Förster resonance energy transfer, we identified an intermediate state of Streptococcus pyogenes Cas9, representing a conformational checkpoint between DNA binding and cleavage. Upon DNA binding, the HNH domain transitions between multiple conformations before docking into its active state. HNH docking requires divalent cations, but not strand scission, and this docked conformation persists following DNA cleavage. Sequence mismatches between the DNA target and guide RNA prevent transitions from the checkpoint intermediate to the active conformation, providing selective avoidance of DNA cleavage at stably bound off-target sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformational dynamics of Cas9 governing DNA cleavage revealed by single molecule FRET

Off-target binding and cleavage by Cas9 pose as major challenges in its applications. How conformational dynamics of Cas9 governs its nuclease activity under onand offtarget conditions remains largely unknown. Here, using intra-molecular single molecule fluorescence resonance energy transfer measurements, we revealed that Cas9 in apo, sgRNA-bound, and dsDNA/sgRNA-bound forms all spontaneously t...

متن کامل

Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations

The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system recently emerged as a transformative genome-editing technology that is innovating basic bioscience and applied medicine and biotechnology. The endonuclease Cas9 associates with a guide RNA to match and cleave complementary sequences in double stranded DNA, forming an RNA:DNA hybrid and a displaced non-target DNA ...

متن کامل

CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations.

CRISPR-Cas9 has become a facile genome editing technology, yet the structural and mechanistic features underlying its function are unclear. Here, we perform extensive molecular simulations in an enhanced sampling regime, using a Gaussian-accelerated molecular dynamics (GaMD) methodology, which probes displacements over hundreds of microseconds to milliseconds, to reveal the conformational dynam...

متن کامل

Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9.

CRISPR-Cas9 is a genome editing technology with major impact in life sciences. In this system, the endonuclease Cas9 generates double strand breaks in DNA upon RNA-guided recognition of a complementary DNA sequence, which strictly requires the presence of a protospacer adjacent motif (PAM) next to the target site. Although PAM recognition is essential for cleavage, it is unknown whether and how...

متن کامل

Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage

CRISPR-associated endonuclease Cas9 cuts DNA at variable target sites designated by a Cas9-bound RNA molecule. Cas9's ability to be directed by single 'guide RNA' molecules to target nearly any sequence has been recently exploited for a number of emerging biological and medical applications. Therefore, understanding the nature of Cas9's off-target activity is of paramount importance for its pra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017